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Abstract: - In order to diagnose incipient fault of analog circuits effectively, an analog circuit incipient fault 
approach by using kernel entropy component analysis (KECA) as a preprocessor is proposed in the paper. Time 
responses are acquired by sampling outputs of the circuits under test. Raw features with high dimension are 
generated by wavelet transform. Furthermore, lower dimensional features are produced through KECA as 
samples which are used to construct a classification model based on least squares support vector machine. 
Bandpass filter and leapfrog filter incipient fault diagnosis simulations demonstrate the diagnose procedure of 
the proposed approach, and also validate proposed approach by using KECA as a preprocessor can produce 
higher diagnosis accuracy than the commonly used methods. 
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1 Introduction 
Analog circuits are widely used in many electronic 
systems such as home electronics, automotive 
electronics, industrial electronics, military electronics, 
etc. Meanwhile, analog circuit fault diagnosis has 
become an active area of research in recent years. 
However, compared to the well investigated fault 
diagnosis of digital electronic circuits, the 
diagnostics of analog circuits is far fall behind for the 
reason of component tolerance effects, insufficient 
information, and analog circuits’ nonlinearity. 

Feature extraction is a first important problem in 
analog circuit fault diagnosis, which produces a 
strong effect on successive classifier’s efficiency 
[1-17]. The work in [2] used impulse responses of 
analog circuits as features, which led to a tremendous 
computing workload of classifier. Wavelet transform 
was proposed to dispose impulse responses and 
generate high dimensional features [3-7]. Meanwhile, 
principal component analysis (PCA) [3-6], kernel 
principal component analysis (KPCA) [7], linear 
discriminant analysis (LDA) [8] and kernel linear 
discriminant analysis (KLDA) [9] were presented to 

reduce the dimension of high dimensional features in 
fault diagnosis, and positive results were acquired 
[3-9]. 

Classifier selection is another critical problem in 
analog circuit fault diagnosis. Artificial neural 
network has been commonly used for it can perform 
analog circuit fault diagnosis by using the extracted 
performance data [10-12]. However, low 
convergence rate, falling local optimal solution, and 
poor generalization are disadvantages of the 
algorithm. Support vector machine (SVM) is a 
machine learning tool [18] that accounts for the 
trade-off between learning ability and generalizing 
ability by minimizing structure risk, and it has been 
utilized to analog circuit fault diagnosis [13, 14]. 
Least squares support vector machine (LSSVM) 
improves SVM formulation by adopting 
least-squares linear system as the loss function, 
which can significantly enhance the performance and 
reduce the computation complexity [19]. Hence, 
LSSVM is employed to construct classification 
model in many recent works [15-17]. 

Most of the above works focus on the analog 
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circuit fault diagnosis, and incipient fault diagnosis 
attracts few attentions. However, identifying the 
incipient fault and maintaining the faulty component 
timely is conducive to the health of analog circuits 
and avoid developing into a catastrophic failure of 
analog circuits. Kernel entropy component analysis 
(KECA) is a spectral approach based on the kernel 
similarity matrix and it manages to maintain 
maximum Renyi entropy of the input space data set 
[20]. In this paper, a novel approach for analog 
circuit incipient fault diagnosis by using KECA as a 
preprocessor is presented. Wavelet transform and 
KECA are used for feature extraction and dimension 
reduction. LSSVM is applied to classify different 
fault classes. The proposed approach is demonstrated 
by incipient fault diagnosis simulations of 
Sallen-Key bandpass filter and leapfrog filter. In 
addition, KECA is compared with KPCA in 
visualization, and also compared with PCA, KPCA 
and KLDA in diagnosis simulations. 

This paper is organized in the following order: 
Section 2 introduces incipient fault diagnosis 
approach used in the work. Section 3 gives the 
simulation results and discussions. Finally, 
conclusions are drawn in Section 4. 
 
 
2 Incipient fault diagnosis approach 
Fault diagnosis approach is usually consisting of 
feature extraction, feature dimension reduction and 
classification model construction [2-9, 11, 12]. In the 
work, wavelet transform is used to produce raw 
features firstly, and then KECA is utilized to reduce 
the dimension of raw features. Finally, a 
classification model is constructed by using LSSVM. 
 
 
2.1 Wavelet transform 
Wavelet transform is an effective signal analysis 
technique, and it can generate sufficient features by 
using n-level wavelet decomposition. A mother 
wavelet ( )xψ  is defined firstly 

,
1( ) ( )a b a

x bx
a

ψ ψ=
−           (1) 

where a and b are the scaling parameter and 
translating parameter, respectively. 

Assuming f(x) is a signal, the wavelet transform 
of f(x) is 

,( , ) ( ) ( (1) )(, )a b
x bc a b f x x f x
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where c(a, b) are the wavelet coefficients of the f(x).  
The signal f(x) can be decomposed into different 

levels of approximation coefficients and detail 

coefficients which represent the low-frequency and 
high-frequency components of f(x). For the reason of 
approximation coefficients can capture the basic 
structure of the signal, the first approximation 
coefficients of levels 1 to 5 are selected as raw 
features according to the classic works [3-5]. Haar 
function has short duration in time domain and 
discontinuous character which can cause distinct 
features for distinguishing across fault classes. 
Therefore, Haar wavelet is utilized to process the 
impulse responses of CUTs in the work. 
 
 
2.2 KECA 
Kernel entropy component analysis is a novel kernel 
based data transformation method. Compared to the 
widely used dimension reduction method KPCA 
which is based on top eigenvalues and eigenvectors 
of kernel matrix, KECA is on basis of kernel 
similarity matrix and it manages to maintain the 
maximum Renyi entropy of the input space data set.  

Renyi quadratic entropy is defined as 
2log( ) (x) xH p p d= − ∫          (7) 

where p(x) is probability density function producing 
data set 1 2D x ,x , , xN=  . Since the logarithm is a 
monotonic function, it can be quantified as 
( ) 2 (x) xV p p d= ∫ . A Parzen window density 

estimator is defined to estimate V(p) and H(p) 
1ˆ (x) (x, x )

u

u
D

p k
N σ

∈

= ∑
x

         (8) 

where (x,x )ukσ  is called Parzen window, or kernel 
function, and gauss kernel is used in the work.  

Using the sample mean approximation of the 
expectation operator  

x x x
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(9) 
where element (u,u′) of the N×N kernel matrix K 
equals (x ,x )u ukσ ′ and A is an N×1 vector of ones.  

Renyi entropy estimator can be illustrated in the 
light of the eigenvalues and eigenvectors of the 
kernel matrix, which can be eigendecomposed 
as T

µ=K ED E , where µD  is a diagonal matrix 
consisting of eigenvalues 1 2, , Nµ µ µ ; E is a matrix 

with columns are eigenvectors 1 2, , Ne e e . ˆ ( )V p  
can be expressed as  
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where each term iε  contributes to the entropy 
estimate in the expression. The eigenvalues and 
eigenvectors which are the first v largest contribution 
to the entropy estimate are selected in KECA, then 
the v dimensional 1/2 T

eca v vφ = D E , thus T
eca ec e aa cφ φ=K  

can be obtained in the Mercer kernel space. This is 
obvious difference between KPCA and KECA. 
 
 
2.3 LSSVM 
LSSVM is an enhancement of the standard SVM. It 
uses a linear set of equations instead of a quadratic 
programming problem to obtain support vectors and 
adopts least-squares linear system as loss function. 
Consider a model in the primal weight space of the 
following form 

T(x) x( )wy bϕ= +             (11) 
where x N

i R∈  is the input and iy R∈ is the output; 
( )ϕ ⋅  maps the input data to a high dimensional 

feature space; w is an element of NR . Combining 
fitting error and functional complexity, the 
optimization problem of LSSVM is substituted as 

T 2
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T xs.t . : [ ( ) ] 1,2, ,i i iy w b i lξ φ= − + ∀ =   (13) 
where c is penalty parameter and iξ  is random 
error.  

The Lagrangian of problem (12) is given by 
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where αi are Lagrange multipliers. The equation is 
solved by partially differentiating with respect to 
each variable 
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After elimination of the variables w and ξ , the 
equation can be rewritten as a linear function group 
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where  (x , )xi j i jK k= ; 1
T[ ,  . . . , ]lY y y= ; 

1
T[ ,  . . . , ]lα α α= and 1 [1,  . . . ] ,1=



. 
The LSSVM model can be obtained as  

1
x ,x(x) ( )i j

l

i
i
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where ai, b are solutions of the linear system; k(xi,xj) 
is a kernel function which follows Mercer’s theory. 
RBF kernel has powerful nonlinearity mapping 
ability, and it is selected as the kernel function in the 
work. 

Because the LSSVM is a binary classifier and 
analog circuit incipient fault diagnosis is a 
multi-class recognition problem, one-against-rest 
(OAR), one-against-one (OAO) and binary tree 
method are commonly used in the LSSVM 
multi-classification. However, for a u-class problem, 
OAO method needs to constitute u*(u− 1)/2 LSSVM 
classifiers which consumes too many computing 
resources. Meanwhile, OAR method is somewhat 
less accuracy. Binary tree method only needs to 
construct u-1 LSSVM classifiers, and it has the 
advantages of efficient computation of the tree 
architecture and high classification accuracy of 
LSSVMs. Hence, binary tree method is selected to 
solve the multi-class problem in the work. 
 
 
3 Simulations and results 
 
 
3.1 Simulation procedures and settings 
In this section, Sallen-Key bandpass filter and 
leapfrog filter are used as example circuits. The input 
is a single pulse of height 10V with 1us duration. 
Tolerances of the resistors and capacitors are set to 
5%. Generally, a component with 50% deviation 
from its nominal value is considered to be a fault 
[2-17]. Hence, the component with 25% deviation 
from its nominal value is regarded as an incipient 
fault in the work. Time impulse responses of 
different fault classes are acquired by sampling the 
outputs of the CUTs firstly, and then wavelet 
transform is employed to perform 5-level Haar 
wavelet decomposition in order to generate 
approximation coefficients as raw features. Then, the 
features are normalized. Furthermore, lower 
dimensional data are obtained through KECA as 
samples. For the sakes of convenience and simplicity 
in visualization and comparison, the 5 dimensional 
raw features are reduced to 2 dimensional features. 
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100 output sample data for each fault class are 
collected in simulations. The first 50 sample data are 
used to train LSSVM in order to set up a 
classification model, and the rest 50 sample data are 
applied to test the performance of the model. The 
simulation procedure is shown in Fig. 1. 
 

 
Fig. 1 Simulation procedure 

 
 
3.2 Example 1—Sallen–Key Bandpass Filter 
The circuit is shown in Fig. 2. Each component value 
has been labeled in the figure. R2, R3, C1 and C2 are 
selected as experiment components. The faulty 
impulse responses are measured in order to form 9 
fault classes including R2↑, R2↓, R3↑, R3↓, C1↑, 
C1↓, C2↑, C2↓and no fault (NF), where ↑ and ↓ refer 
to higher and lower than the nominal value, 
respectively. Fault codes, fault classes, the nominal 
and faulty component values are shown in Table 1. 
 

R2  3kΩ

R1  1kΩ C1  5nF
Vin

R5  4kΩR3  2kΩ

R4  4kΩ

C2  5nF

Vout

 
Fig. 2 Sallen–Key bandpass filter circuit 

 
Table 1 Fault codes, fault classes, the nominal and 

faulty component values for bandpass filter 
Fault 
code 

Fault 
class Nominal Faulty 

value 
F0 NF - - 
F1 R2↑ 3kΩ 3.75kΩ 
F2 R2↓ 3kΩ 2.25kΩ 

F3 R3↑ 2kΩ 2.5kΩ 
F4 R3↓ 2kΩ 1.5kΩ 
F5 C1↑ 5nF 6.25nF 
F6 C1↓ 5nF 3.75nF 
F7 C2↑ 5nF 6.25nF 
F8 C2↓ 5nF 3.75nF 

 

 
Fig. 3 Scatter plots of fault classes characterized by 2 

dimensional features of bandpass filter reduced by 
KECA 

 

 
Fig. 4 Scatter plots of fault classes characterized by 2 

dimensional features of bandpass filter reduced by 
KPCA 

 
Subsequently, the 5 dimensional raw features of 

all fault classes are reduced to 2 dimensional features 
which contribute more to the Renyi entropy by using 
KECA. Fig. 3 reveals the scatter plots of fault classes 
characterized by the 2 dimensional features reduced 
by KECA. It is obviously that all fault classes are 
distinct ambiguity groups. This manifests different 
fault classes are well separated by using KECA.  

In order to make a comparison, KPCA is applied 
to reduce the dimension of the raw features. The 
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reduced 2 dimensional features with the first 2 large 
eigenvalues are generated and shown in Fig. 4. The 
figure is similar to Fig. 3 because the two approaches 
are using the same data to generate lower 
dimensional features. It is obviously that F1, F2, F3, 
F4, F5, F6 and F7 fault classes are also distinct 
ambiguity groups in the figure. However, there is 
overlapping for F0 fault class and F8 fault class. This 
reveals that KECA can generate better extraction 
performance than KPCA. 

 

 
Fig. 5 Binary tree structure for bandpass filter 

 
The constructed binary tree is shown in Fig. 5. All 

fault classes are classed into two fault class groups at 
the root of the tree by the first binary LSSVM. 
Afterward, the two fault class groups are classed into 
smaller groups by each binary LSSVM at the node of 
the tree in this fashion. This is repeated recursively 
downward the tree until reaches a leaf node that 
represents the class it has been assigned to. 8 
LSSVM classifiers are used in total. The overall 
diagnosis accuracy is 100%. 
 
 
3.3 Example 2—Leapfrog Filter 
Leapfrog filter is shown in Fig. 6, and it is a 
benchmark circuit of ITC97. The circuit is more 

complex for the reason of it is consisted of 4 
capacitors, 13 resistors and 6 operational amplifiers. 
Each component value has been labeled in the figure. 
R1, R2, R4, R5, R6, R7, R9, R12, R13, C1 and C2 
are selected as experiment components. 23 fault 
classes including R1↑, R1↓, R2↑, R2↓, R4↑, R4↓, 
R5↑, R5↓, R6↑, R6↓, R7↑, R7↓, R9↑, R9↓, R12↑, 
R12↓, R13↑, R13↓,C1↑, C1↓, C2↑, C2↓ and no fault 
(NF) are formed. Fault codes, fault classes, the 
nominal and faulty component values are shown in 
Table 2. 
 

Table 2 Fault codes, fault classes, the nominal and 
faulty component values for leapfrog filter 
Fault 
code 

Fault 
class Nominal Faulty 

value 
F0 NF - - 
F1 R1↑ 10kΩ 12.5kΩ 
F2 R1↓ 10kΩ 7.5kΩ 
F3 R2↑ 10kΩ 12.5kΩ 
F4 R2↓ 10kΩ 7.5kΩ 
F5 R4↑ 10kΩ 12.5kΩ 
F6 R4↓ 10kΩ 7.5kΩ 
F7 R5↑ 10kΩ 12.5kΩ 
F8 R5↓ 10kΩ 7.5kΩ 
F9 R6↑ 10kΩ 12.5kΩ 

F10 R6↓ 10kΩ 7.5kΩ 
F11 R7↑ 10kΩ 12.5kΩ 
F12 R7↓ 10kΩ 7.5kΩ 
F13 R9↑ 10kΩ 12.5kΩ 
F14 R9↓ 10kΩ 7.5kΩ 
F15 R12↑ 10kΩ 12.5kΩ 
F16 R12↓ 10kΩ 7.5kΩ 
F17 R13↑ 10kΩ 12.5kΩ 
F18 R13↓ 10kΩ 7.5kΩ 
F19 C1↑ 10nF 12.5nF 
F20 C1↓ 10nF 7.5nF 
F21 C2↑ 20nF 25nF 
F22 C2↓ 20nF 15nF 

 

C2 20nF
R6 

10kΩ

R3 10kΩ

R2 10kΩ

R1 10kΩ R4 
10kΩ

C1 10nF
R5 10kΩ

Vout

Vin

R13 10kΩ

C3  20nF

R12 10kΩ

R9 10kΩ
C4  10nF

R11 10kΩ

R7 
10kΩ R8 

10kΩ R10 
10kΩ

 
Fig. 6 Leapfrog filter circuit 
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Fig. 7 Scatter plots of fault classes characterized by 2 

dimensional features of leapfrog filter reduced by 
KECA.  

 
After acquiring 5 dimensional raw features, 

KECA is utilized to reduce the dimension of features 
from 5 to 2. Fig. 7 reveals the scatter plots of fault 
classes characterized by 2 dimensional features. It is 
obviously that F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, 
F11, F12, F13, F14, F15, F16, F17, F18, F19, F20 
and F21 fault classes are distinct ambiguity groups. 
However, there is partially overlapping for F10 fault 
class and F22 fault class. Fig. 8 shows the scatter 
plots of fault classes characterized by 2 dimensional 
features reduced by using KPCA. F0, F1, F2, F3, F4, 
F5, F6, F7, F8, F9, F11, F12, F13, F14, F16, F18, 
F19, F20 and F21 fault classes are distinct ambiguity 
groups in the figure. Nevertheless, there is seriously 
overlapping for F10 fault class and F22 fault class, 
and slightly overlapping for F15 fault class and F17 
fault class. This example also reveals that KECA can 
generate better extraction performance than KPCA. 

 

 

Fig. 8 Scatter plots of fault classes characterized by 2 
dimensional features of leapfrog filter reduced by 

KPCA  
 

Table 3 Accuracies of the diagnosis approach for 
leapfrog filter 

Fault code Fault class Accuracy 
F0 NF 100% 
F1 R1↑ 100% 
F2 R1↓ 100% 
F3 R2↑ 100% 
F4 R2↓ 100% 
F5 R4↑ 100% 
F6 R4↓ 100% 
F7 R5↑ 100% 
F8 R5↓ 100% 
F9 R6↑ 100% 
F10 R6↓ 94% 
F11 R7↑ 100% 
F12 R7↓ 100% 
F13 R9↑ 100% 
F14 R9↓ 100% 
F15 R12↑ 100% 
F16 R12↓ 100% 
F17 R13↑ 100% 
F18 R13↓ 100% 
F19 C1↑ 100% 
F20 C1↓ 100% 
F21 C2↑ 100% 
F22 C2↓ 92% 

 
The constructed binary tree is shown in Fig. 9 and 

22 LSSVM classifiers are used. Table 3 demonstrates 
the accuracies of the diagnosis approach in 
identifying the 23 fault classes. The F0, F1, F2, F3, 
F4, F5, F6, F7, F8, F9, F11, F12, F13, F14, F15, F16, 
F17, F18, F19, F20 and F21 fault classes can be 
classified correctly. Meanwhile, 50 test data of F10 
fault class are classified correctly 47 times and 
misclassified as F22 fault class 3 times; 50 test data 
of F22 fault class are classified correctly 46 times 
and misclassified as F10 fault class 4 times. The 
overall diagnosis accuracy is 99.4%. 

As can be seen from Figs. 3, 4, 7 and 8, the 
separability of features reduced by using KECA is 
further enlarged than by using KPCA, which 
represents different fault classes can be better 
separated by using KECA. Therefore, applying 
KECA which chooses components based on Renyi 
entropy to reduce high dimension of features in 
analog circuit incipient fault diagnosis is more 
appropriate than using KPCA which is choosing 
components based on top eigenvalues. 
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Fig. 9 Binary tree structure for leapfrog filter 

 
Table 4 Diagnosis accuracies of our approach and the referenced approaches 

Example Reference [6] Reference [7] Reference [9]  Our work 
bandpass filter 96.9% 99.1% 99.6% 100% 
leapfrog filter 95.7% 98.2% 99.1% 99.4% 

 
 
3.4 Comparison simulation  
For the purpose of validating the effectness of KECA 
presented in the work, the approach is compared with 
PCA [6], KPCA [7] and KLDA [9] which are 
commonly used in analog circuit fault diagnosis as 
data transformation and dimension reduction 
approaches. 5 dimensional raw features of example 1 
and example 2 are used, and the incipient fault 
diagnosis simulation steps and conditions are the 
same with our work. The diagnosis accuracy of each 
approach is shown in Table 4. From the results of the 
table, it can be seen that performing incipient fault by 
using KECA as a preprocessor can obtain more 
positive results than by using PCA, KPCA and 
KLDA, which represents that KECA can generate 
better extraction performance than PCA, KPCA and 
KLDA in dimension reduction. 
 
 
4 Conclusions 
In this work, a novel approach has been presented to 
perform analog circuit incipient fault diagnosis by 
using KECA as a preprocessor. Wavelet transform on 
time responses has produced raw features which are 
related to each of fault classes. KECA has been used 
to reduce the dimension of raw features from 5 
dimensional to 2 dimensional. Different fault classes 

have been identified by binary tree LSSVM. Through 
comparing the scatter plots of fault classes 
characterized by 2 dimensional features reduced by 
using KECA and KPCA respectively, it can be easily 
concluded that KECA can generate better 
separability of features than KPCA. Comparison 
simulation results have also verified that the 
proposed approach can produce higher diagnosis 
accuracy than the commonly used methods. 
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